Spark 编程指南中文版Spark Streaming基本概念缓存或持久化
上一篇:DStream的输出操作 下一篇:Checkpointing

缓存或持久化

和RDD相似,DStreams也允许开发者持久化流数据到内存中。在DStream上使用persist()方法可以自动地持久化DStream中的RDD到内存中。如果DStream中的数据需要计算多次,这是非常有用的。像reduceByWindowreduceByKeyAndWindow这种窗口操作、updateStateByKey这种基于状态的操作,持久化是默认的,不需要开发者调用persist()方法。

例如通过网络(如kafka,flume等)获取的输入数据流,默认的持久化策略是复制数据到两个不同的节点以容错。

注意,与RDD不同的是,DStreams默认持久化级别是存储序列化数据到内存中,这将在性能调优章节介绍。更多的信息请看rdd持久化

上一篇:DStream的输出操作 下一篇:Checkpointing