编程之道:面试和算法心得第一部分 数据结构第二章 数组2.1 寻找最小的 k 个数
上一篇:2.0 本章导读
下一篇:2.2 寻找和为定值的两个数
2.1 寻找最小的 k 个数
题目描述
输入n个整数,输出其中最小的k个。
分析与解法
解法一
要求一个序列中最小的k个数,按照惯有的思维方式,则是先对这个序列从小到大排序,然后输出前面的最小的k个数。
至于选取什么的排序方法,我想你可能会第一时间想到快速排序(我们知道,快速排序平均所费时间为n*logn
),然后再遍历序列中前k个元素输出即可。因此,总的时间复杂度:O(n * log n)+O(k)=O(n * log n)
。
解法二
咱们再进一步想想,题目没有要求最小的k个数有序,也没要求最后n-k个数有序。既然如此,就没有必要对所有元素进行排序。这时,咱们想到了用选择或交换排序,即:
1、遍历n个数,把最先遍历到的k个数存入到大小为k的数组中,假设它们即是最小的k个数;
2、对这k个数,利用选择或交换排序找到这k个元素中的最大值kmax(找最大值需要遍历这k个数,时间复杂度为O(k)
);
3、继续遍历剩余n-k个数。假设每一次遍历到的新的元素的值为x,把x与kmax比较:如果x = kmax
,则继续遍历不更新数组。
每次遍历,更新或不更新数组的所用的时间为O(k)
或O(0)
。故整趟下来,时间复杂度为n*O(k)=O(n*k)
。
解法三
更好的办法是维护容量为k的最大堆,原理跟解法二的方法相似:
- 1、用容量为k的最大堆存储最先遍历到的k个数,同样假设它们即是最小的k个数;
- 2、堆中元素是有序的,令k1
上一篇:2.0 本章导读
下一篇:2.2 寻找和为定值的两个数