连锁更新
前面说过, 每个节点的 previous_entry_length
属性都记录了前一个节点的长度:
- 如果前一节点的长度小于
254
字节, 那么previous_entry_length
属性需要用1
字节长的空间来保存这个长度值。 - 如果前一节点的长度大于等于
254
字节, 那么previous_entry_length
属性需要用5
字节长的空间来保存这个长度值。
现在, 考虑这样一种情况: 在一个压缩列表中, 有多个连续的、长度介于 250
字节到 253
字节之间的节点 e1
至 eN
, 如图 7-11 所示。
因为 e1
至 eN
的所有节点的长度都小于 254
字节, 所以记录这些节点的长度只需要 1
字节长的 previous_entry_length
属性, 换句话说,e1
至 eN
的所有节点的 previous_entry_length
属性都是 1
字节长的。
这时, 如果我们将一个长度大于等于 254
字节的新节点 new
设置为压缩列表的表头节点, 那么 new
将成为 e1
的前置节点, 如图 7-12 所示。
因为 e1
的 previous_entry_length
属性仅长 1
字节, 它没办法保存新节点 new
的长度, 所以程序将对压缩列表执行空间重分配操作, 并将e1
节点的 previous_entry_length
属性从原来的 1
字节长扩展为 5
字节长。
现在, 麻烦的事情来了 —— e1
原本的长度介于 250
字节至 253
字节之间, 在为 previous_entry_length
属性新增四个字节的空间之后, e1
的长度就变成了介于 254
字节至 257
字节之间, 而这种长度使用 1
字节长的 previous_entry_length
属性是没办法保存的。
因此, 为了让 e2
的 previous_entry_length
属性可以记录下 e1
的长度, 程序需要再次对压缩列表执行空间重分配操作, 并将 e2
节点的previous_entry_length
属性从原来的 1
字节长扩展为 5
字节长。
正如扩展 e1
引发了对 e2
的扩展一样, 扩展 e2
也会引发对 e3
的扩展, 而扩展 e3
又会引发对 e4
的扩展……为了让每个节点的previous_entry_length
属性都符合压缩列表对节点的要求, 程序需要不断地对压缩列表执行空间重分配操作, 直到 eN
为止。
Redis 将这种在特殊情况下产生的连续多次空间扩展操作称之为“连锁更新”(cascade update), 图 7-13 展示了这一过程。
除了添加新节点可能会引发连锁更新之外, 删除节点也可能会引发连锁更新。
考虑图 7-14 所示的压缩列表, 如果 e1
至 eN
都是大小介于 250
字节至 253
字节的节点, big
节点的长度大于等于 254
字节(需要 5
字节的 previous_entry_length
来保存), 而 small
节点的长度小于 254
字节(只需要 1
字节的 previous_entry_length
来保存), 那么当我们将 small
节点从压缩列表中删除之后, 为了让 e1
的 previous_entry_length
属性可以记录 big
节点的长度, 程序将扩展 e1
的空间, 并由此引发之后的连锁更新。
因为连锁更新在最坏情况下需要对压缩列表执行 N
次空间重分配操作, 而每次空间重分配的最坏复杂度为 , 所以连锁更新的最坏复杂度为 。
要注意的是, 尽管连锁更新的复杂度较高, 但它真正造成性能问题的几率是很低的:
- 首先, 压缩列表里要恰好有多个连续的、长度介于
250
字节至253
字节之间的节点, 连锁更新才有可能被引发, 在实际中, 这种情况并不多见; - 其次, 即使出现连锁更新, 但只要被更新的节点数量不多, 就不会对性能造成任何影响: 比如说, 对三五个节点进行连锁更新是绝对不会影响性能的;
因为以上原因, ziplistPush
等命令的平均复杂度仅为 , 在实际中, 我们可以放心地使用这些函数, 而不必担心连锁更新会影响压缩列表的性能。